
Virtual Development Environment in a Box

Students: Dylan McDougall (dmcdougall2019@my.fit.edu)

and Ian Orzel (iorzel2019@my.fit.edu)

Faculty: Ryan Stansifer (ryan@fit.edu)

Client: Ryan Stansifer (ryan@fit.edu)

Progress of current Milestone:

Task Completion Ian Dylan Todo

Compare and Select Technical
Tools

100% 66% 33%

“Hello World” Demos 100% 33% 66%

Resolve Technical Challenges 100% 66% 33%

Compare and Select
Collaboration Tools

100% 55% 45%

Requirement Document 100% 50% 50%

Design Document 100% 10% 90%

Test Plan 100% 90% 10%

Discussion:

● Compare and Select Technical Tools:

○ For user interaction, we considered technical tools to support either a command

line interface or a graphical user interface. For graphical user interfaces, we

considered using Node.js and PyGUI, but we decided that this project would be

more effective as a command line interface. We first planned to use python as a

command line interface, but we quickly realized that this would prove

inconvenient for the user as they would have to start every command with

mailto:dmcdougall2019@my.fit.edu
mailto:iorzel2019@my.fit.edu
mailto:ryan@fit.edu
mailto:ryan@fit.edu


“python” and then a path to a file. Thus, we decided to create the command line

interface using shell and batch scripts (depending on the operating system).

○ For emulating virtual environments, we considered using QEMU, Docker, and

VirtualBox. QEMU was the only viable option for our project as it is the only one

that allows us to emulate a wide variety of architectures with little hassle. Docker

and VirtualBox were not viable for this project as they are not capable of

emulation, only virtualization.

○ We have decided to use a web server for container distribution as it would be

more reliable and would put less work on the clients.

Tool Advantages Disadvantages

Web Server A web server would be
very convenient to use in
order to obtain containers.
This option would be a lot
more reliable for obtaining
containers.

This would take a lot of time
to set up.
The server would require
upkeep in order to stay up.

Local File Transfer This would require
minimal effort from us to
set up.
This requires no upkeep
other than professors
sharing files with students.

This would require more
effort from students and
faculty to set up and use.

● “Hello World” Demos:

○ For the containerization demo, I installed Debian 4 on a SPARC virtual machine.

Once Debian was installed, I booted into it, logged into the shell, and ran ‘echo

Hello, World!’ from inside the container.

○ For the container sharing demo, I transferred a pre-built qemu image from one

computer to another to ensure that these images can be easily transferred between



computers. I took the .qcow2 file along with a json file configuration that contains

command line arguments. Once I transferred these files to another computer, I

started using the related commands. I ensured that the image started and worked

the same way as it did on the previous computer.

○ For the development tools demo, I installed gcc onto the previously mentioned

Debian SPARC virtual machine. I wrote a simple ‘Hello World’ program in C and

compiled it using the virtual machine’s gcc compiler. After it successfully

compiled, I ran the resulting SPARC binary.

● Resolve Technical Challenges:

○ QEMU offers various different ‘systems’ for emulation. For example, there is an

x86_64 system, a SPARC system, an ARM system, etc. These systems all have

the same command line interface so commands between them are

interchangeable. The qemu-img command can be used to create virtual hard disk

images of different sizes using standard formats (qcow, raw, vdi, etc.). In order to

boot from a hard disk, one must point QEMU to the virtual hard disk and use

command line flags to configure the machine. These flags will be stored in a

configuration file along with the hard disk image as described in the design

document. In order to install an operating system onto a QEMU virtual machine,

you must do all the previously mentioned things as well as use the -cdrom from to

give it an installation ISO to boot off of and the -boot flag to tell it to boot from

the installation disk. QEMU also provides a -nographic flag, which allows the

system to run within the terminal.



○ The compiler theory course requires an environment that has support for basic

developer tools, including gcc, gdb, and malloc. It also needs to contain the ability

to compile and run Java programs (thus must have the JVM set up). Another

important aspect of this image is that it must be set up in SPARC architecture so

that SPARC binaries can be run natively on it.

○ In order to support this on multiple platforms, we first need to create installers or

installation guides that work for every platform that a student can use (Windows,

MacOS, and Debian). To do this, we would need to create exe, pkg, and deb files

that will install all of the proper tools.

Next, we need to talk about the CLI for the tool. To support the CLI for all

platforms, it needs to be created in a shell script and a batch script. Thus, we need

to be able to create a program using both of these. Luckily, all other features of

this program will be written in Python, so it will be automatically supported by all

platforms assuming that they have Python installed.

● Compare and Select Collaboration Tools:

○ For software development we will be using Git for version control, GitHub for

sharing our code, and Visual Studio Code for programming. Git is a given since it

is an industry standard, and both of us are familiar with GitHub so it was only

natural that we use it for collaboration. Visual Studio Code has good support for

Python, which we will primarily be using, as well as shell scripting languages.

Here are a few other options we considered:



Editor Python
Support

CMD
Support

Bash
Support

JSON
Support

Not
defunct

VSCode Yes Yes Yes Yes Yes

Atom Yes No No Yes No

PyCharm Yes No No No Yes

○ We have decided to mostly use Latex and Google Docs for this project. We will

use latex for a lot of the documents, but we will use Google Docs for the

presentations and certain documents where it is more convenient.

Tool Advantages Disadvantages

Google Docs Convenient for multiple
people to use at once.

Has less functionality than
other options.

Microsoft Office Requires minimal technical
knowledge.
Has an expanse of features.

Difficult to use for multiple
people at once.

Latex Has huge functionality,
more so than any of the
others.
Easy to use with two
people at once.

Requires technical knowledge
in advance to use.

○ We decided to use Discord for communication due to our large experience with

the platform.

Tool Advantages Disadvantages

Slack Has a lot of expansive features
for many types of
communication.

Minimal experience with this
tool.

Discord We are extremely experienced
with Discord.

Is typically associated with
gaming rather than technical
communication.



Microsoft
Teams

Has a lot of expansive features
for many types of
communication.

No experience with this tool.

○ For the task calendar we decided between Trello and Jira. Dylan is more familiar

with Trello than with Jira, so we decided that we will use Trello.

Advantages Disadvantages

Trello Intuitive Interface

Familiar to all members
of the project team

Good for small projects

Not as feature-rich as
Jira

Too simple for large
projects

Jira Provides more
functionality

Good for large projects

More difficult to learn

Cumbersome for small
projects

● Requirement Document: We constructed a requirement document that lists the various

requirements for the different parts of the project. We have included functional,

performance, and logical types of requirements.

● Design Document: This document describes the overall architecture of the project and

provides an appropriate UML diagram. It goes into detail about how various aspects of

the system will function and provides proper definitions for them, such as the usage of

containers, repositories, etc. It also provides a mock-up for the command line interface.

● Test Plan: This document features a list of various tests that we plan to use in order to

ensure that the system we have constructed is working properly. These tests test all of the

included requirements to ensure that each of them are satisfied by the system.

Member Discussion:



● Ian Orzel: For this milestone, I compared technical tools for user interfacing and for

container sharing. Then, I performed a hello world demo of sharing containers. I also

resolved the technical issues of what Dr. Stansifer needed in an image for Compiler

Theory and with how to support multiple platforms. I also compared tools for

documentation and messaging. Finally, I wrote half of the requirement document as well

as the entire test document. I proofed and made small changes to the design document.

● Dylan McDougall: For this milestone I compared technical tools for emulating virtual

environments and created a hello world demo for using QEMU, which is the tool I chose

for this aspect of the project. I decided that we would be using Git and GitHub for version

control and code sharing, and Visual Studio Code for development.  I wrote half of the

requirements document as well as the entire design document, and suggested minute

changes to Ian’s test document.

Next Milestone Matrix:

Task Ian Dylan

Basic Qemu Image for Compiler Theory 0% 100%

Run Commands and Provide/Receive Standard Output/Input 50% 50%

Import and Export Files from an Image 75% 25%

Discussion of Planned Tasks for Next Milestone:

● Basic Qemu Image for Compiler Theory: The purpose of this task is to create a qemu

image that satisfies all of the requirements needed for the Compiler Theory course.

● Run Commands and Provide/Receive Standard Output/Input: The Python program

should be able to take a container and start and stop it. Then, it should be able to run shell



commands on the container. Finally, the program should be able to provide standard input

and obtain standard output.

● Import and Export Files from an Image: The Python program should be able to

transfer files from the local file system to the file system of the container. The Python

program should be able to transfer files from the file system of the container to the local

file system.

Dates of Meeting with Client: (See Faculty Meeting Times)

Client Feedback for Milestone: (See Faculty Feedback)

Dates of Meeting with Faculty:

● September 14th

● September 28th

● October 5th

FacultyFeedback for Milestone:

● Compare and Select Technical Tools:

● “Hello World” Demos:

● Resolve Technical Challenges:

● Compare and Select Collaboration Tools:

● Requirement Document:

● Design Document:

● Test Plan:

Faculty Advisor Signature: _________________________________________ Date: _________



Score for each member:

Ian 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6 6.5 7 7.5 8 8.5 9 9.5 10

Dylan 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6 6.5 7 7.5 8 8.5 9 9.5 10

Faculty Advisor Signature: _________________________________________ Date: _________


